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Linear theory of multistage forward-wave amplifiers

G. S. Nusinovich and M. Walter
Institute for Plasma Research, University of Maryland, College Park, Maryland 20742-3511

~Received 16 March 1999!

A small-signal theory describing multistage gyro-traveling-wave tubes~gyro-TWTs! is developed. Multi-
stage configurations of gyro-TWTs as well as conventional TWTs seem to be attractive because of their
principal ability to operate stably with a high gain, since the stability can be provided by a shortening of each
stage while the gain increases with the number of stages. Two regimes of operation, far from cutoff and near
cutoff, are considered. In the former case, the equations can be reduced to those describing conventional TWTs
and free electron laser amplifiers. Thus a part of the results obtained is also valid for these devices. For
two-stage configurations~two waveguides separated by a drift region! the effect of the difference in waveguide
cutoff frequencies on the gain and bandwidth is studied. This effect has a common nature with stagger-tuning
of cavities, which is widely used in conventional klystrons and gyroklystrons for bandwidth enlargement. The
trade-off in gain and bandwidth of such ‘‘stagger-tuned,’’ two-stage gyro-TWTs and TWTs is analyzed. Also,
the theory of two-stage gyro-TWTs with tapered waveguides and external magnetic field is discussed.
@S1063-651X~99!05610-X#
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I. INTRODUCTION

In recent years a strong interest in the developmen
high-power, large-bandwidth, millimeter-wave amplifie
has been demonstrated. One of the most promising la
bandwidth amplifiers is the gyro-traveling-wave tube~gyro-
TWT!. As shown in Ref.@1#, even in a gyro-TWT with a
uniform external magnetic field and constant dimensions
the waveguide in the interaction region, a 10% bandwidth
the Ka band at a power level exceeding 10 kW can be re
ized. However, as has been shown in many experiments
operation of these tubes can be susceptible to parasitic
excitation, which very often prevents high-gain, larg
bandwidth performance~see, e.g., Refs.@2–4#, and refer-
ences therein!.

One of the means to overcome this difficulty is a tw
stage configuration, which implies two waveguides separa
by a drift section. Each of these waveguides can be su
ciently short for preventing self-excitation. Such a sche
was shown, possibly for the first time, in Ref.@5#. A little
later, an analytical study of the bandwidth properties of su
a configuration with tapered waveguides was done in R
@6#. A much more detailed numerical study of the larg
signal operation of these devices was carried out later at
Naval Research Laboratory@7,8#. The studies were followed
by successful experimental demonstration of operation
20% bandwidth with 25-dB saturated gain@9#. ~Note that, in
a certain sense, a severed circuit in which a sever is pla
inside the waveguide for suppressing parasitic self-excita
@10# can also be treated as a two-stage gyro-TWT.!

In spite of a relatively large number of studies of tw
stage gyro-TWTs, a more or less general treatment of th
devices, to the best of our knowledge, has not been done
In the present paper, we develop a linear theory which
scribes a small-signal operation of multistage gyro-TW
with untapered waveguides in the interaction region. Sinc
the limiting case of dominant inertial bunching the equatio
describing the gyro-TWT can be reduced to equations
PRE 601063-651X/99/60~4!/4811~12!/$15.00
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scribing a conventional TWT, part of our treatment is al
valid for linear beam multistage TWTs. Our paper is org
nized as follows: In Sec. II the equations describing ope
tion far from cutoff and near cutoff are given, and an expr
sion for the small-signal gain is derived. Also in this sectio
we discuss the formalism describing two-stage gyro-TW
with tapered waveguides and an external magnetic fi
~The derivation of equations describing gyro-TWTs with t
pered parameters is given in the Appendix.! In Sec. III we
present results of the study. In Sec. IV we discuss our res
and show how the results of the general theory expresse
properly normalized parameters can be used in concrete
signs and experiments.

II. GENERAL FORMALISM

In the analysis of interaction between electrons and e
tromagnetic~EM! waves propagating in a waveguide, w
will distinguish two cases: operation far from cutoff, an
operation near cutoff. Operation far from cutoff implies th
only the forward wave propagates synchronously with el
trons, while the backward wave, which may appear due
some reflections of the forward wave from the exit, is no
synchronous, and, therefore, its interaction with electro
can be neglected. In terms of the cyclotron resonance co
tion this statement means that for the forward wave the tr
sit angle of electrons,

Q5~v2kzvz2sV!
L

vz
, ~1!

does not exceed 2p, while for the backward wave, which ha
the opposite sign of the Doppler term,kzvz , this angle is
much larger than 2p. This, apparently, corresponds to th
conditionukzuL@2p, which implies many axial variations o
the wave field along the waveguide lengthL. In Eq. ~1! v
andkz are, respectively, the wave frequency and axial wa
4811 © 1999 The American Physical Society
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4812 PRE 60G. S. NUSINOVICH AND M. WALTER
number, andvz andsV are, respectively, the electron axi
velocity and the resonant harmonic of the electron cyclot
frequency.

Operation near cutoff implies the excitation of waves w
small axial wave numbers,ukzuL&2p, when the electrons
interact synchronously with both forward and backwa
waves at the same time. Below, we will consider these
cases separately.

A. Operation far from cutoff

Omitting the derivation of corresponding equations wh
can be found elsewhere@11,12#, let us present these equ
tions in the form describing the changes in the electron
ergy and phase and in the wave amplitude along the axi
a gyro-TWT operating in a large-signal, stationary regim

dw

dz
522

~12w!s/2

12bw
Re~Fe2 iu!, ~2!

du

dz
5

1

12bw
$w2D1s~12w!s/221 Im~Fe2 iu!%, ~3!

dF

dz
52I 0

1

2p E
0

2p ~12w!s/2

12bw
eiu du0 . ~4!

Herew52@(12hbz0)/b'0
2 #@(g02g)/g0# is the normalized

variable describing the changes in electron energy along
axis of the device;h5kzc/v is the normalized axial wave
number;bz0 andb'0 are, respectively, the initial axial an
orbital velocities of the electrons normalized to the speed
light; g is the electron energy normalized to the rest ener
and g0 is its initial value determined by the beam volta
Vb : g0511eVb /mc2. In Eqs. ~2!–~4!, z5@b'0

2 (1
2h2)/2bz0(12hbz0)#(vz/c) is the normalized axial coor
dinate, parameterb5hb'0

2 /2bz0(12hbz0) characterizes the
changes in the electron axial velocity with the change
electron energy~the so-called ‘‘recoil effect’’!, u is a slowly
variable gyrophase of the resonant cyclotron harmonic w
respect to the phase of the forward waveu5s(*0

tVdt8
1f)2(vt2kzz) ~heref is the gyrophase at the entrance!,
D5@2(12hbz0)/b'0

2 (12h2)#@12hbz02s(V0 /v)# is the
initial cyclotron resonance mismatch@recall that the termw
in figure brackets in Eq.~3! describes the relativistic effect o
changes in electron cyclotron frequency due to electron
ergy modulation#, and

F5
eA

mcv

2~12hbz0!2

g0b'0
3 k3

as21

~s21!!2s Ls ~5!

is the normalized wave amplitude for the wave with elect
field, EW 5Re$A(z)EW (rW')ei(vt2kzz)%. So the axial dependence o
the wave envelopeA(z) determined by Eq.~4! describes the
wave amplification. In Eq.~4!,

I 0516
eIb
mc3

1

hk2

~12hbz0!3

g0b'0
4 F as21

~s21!!2sG2

Gcpl ~6!

is the normalized beam current parameter (I b is the beam
current!. In Eqs.~5! and~6!, k5k'c/v5A12h2 is the nor-
n

o

-
of

he

f
;

n

h
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malized transverse wave number,a5k'r L.skb'0 /(1
2hb0) is the normalized Larmor radiusr L , and

Ls5F 1

k'
S ]

]X
1 i

]

]YD Gs

C~X,Y!

is the differential operator describing the transverse struc
of the rf Lorentz force acting on electrons with transver
coordinates of a guiding centerX andY; hereC is the mem-
brane function which obeys the Helmholtz equation w
corresponding boundary conditions@13#. For cylindrical
waveguides this function can be written asC
5J6m(k'r )exp(7imw) where m is the azimuthal index of
the wave, andr andw are the polar coordinates. Correspon
ingly, Ls5J2(s7m)(k'R0)exp@i(s7m)w0#, whereR0 and w0
are polar coordinates of the guiding center, and in Eq.~6! the
coupling impedance of a thin annular electron beam to
wave is equal to

Gcpl5
Jm7s

2 ~k'R0!

~n22m2!Jm
2 ~n!

. ~7!

Heren5k'Rw ~whereRw is the waveguide radius! is thepth
root of the equationJm8 (n)50, i.e., the eigenvalue for the
TEm,p wave.

Let us emphasize that Eqs.~2!–~4! are valid for any
waveguide section of a multistage gyro-TWT. These secti
can be characterized by different values of the parametes,
I 0 , D, andb and, what is most important, the boundary co
ditions forw, u, andF are different for different sections. Fo
the normalized energy and phase the boundary condition
the entrance to each section can be written asw(z in

(n)) and
u(z in

(n)) @here ~n! is the stage number#, which for the input
waveguide yield w(1)(0)50, u (1)(0)5u0P@0;2p). The
boundary condition for the wave amplitude in the inp
waveguide isF (1)(0)5F0 where F0 is determined by the
input power of a signal~for details, see, e.g., Ref.@14#!, in all
other well-matched sectionsF(z in

(n))50. Certainly, in the
case of reflections the latter condition should be modified

In the frame of the small-signal theory, the EM wav
causes only small perturbations in electron energy and ph
i.e., in Eqs.~2!–~4! w5w(1) and u5u (0)1u (1) . Here sub-
indices~0! and~1! denote zero- and first-order terms, respe
tively, andu (0)5u(0)2Dz. Therefore, linearizing Eqs.~2!–
~4! with respect to these perturbations and introducing

w̃5
1

F0

1

2p E
0

2p

w~1!e
iu0 du0, ũ5

1

F0

1

2p E
0

2p

u~1!e
iu0 du0,

F̃5
F

F0
eiDz, ~8!

one can reduce Eqs.~2!–~4! to the following set of equa-
tions:

dw̃

dz
52F̃, ~9!

dũ

dz
5~12bD!w̃1

s

2i
F̃, ~10!
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dF̃

dz
2 iDF̃52I 0H i ũ2S s

2
2bD w̃J . ~11!

For perturbationsw̃, ũ, andF̃, whose axial dependence ca
be given as exp(iGz) ~whereG is the wave propagation con
stant in the presence of the beam!, these equations yield th
known dispersion equation@11,12,15–17#

~G2D!~G21I 0b!2sI0G1I 050. ~12!

As shown in Ref.@18#, when the normalized beam curre
parameterI 0 is small, we can introduceg5G/I 0

1/3 and d
5D/I 0

1/3, and, ignoring the terms proportional toI 0
1/3, reduce

Eq. ~12! to

g2~g2d!1150, ~13!

which is the standard dispersion equation for conventio
TWTs with negligibly small space charge effects@19#. Note,
first, that this normalization corresponds to multiplying t
normalized axial coordinatez by I 0

1/3, and, second, that thi
value I 0

1/3 and the detuningd apparently play here the sam
role as, respectively, the Pierce gain parameterC, and the
parameterb in the theory of conventional TWTs@19#. Also
note that the transition from Eq.~12! to Eq.~13! corresponds
to reducing Eqs.~9!–~11! to

dw5

dz8
52F5 , ~14!

dũ

dz8
5w5 , ~15!

dF5

dz8
2 idF5 52 i ũ. ~16!

Herez85zI 0
1/3, w5 5w̃/I 0

1/3, andF5 5F̃/I 0
2/3.

Since we are dealing with the cubic dispersion equat
~13!, which has three roots, we can represent these pertu
tions as

w5 5(
l 51

3

Ale
ig lz8, ũ5(

l 51

3

Ble
ig lz8, F5 5(

l 51

3

Cle
ig lz8,

and from Eqs.~14! and~15! establish the following relations
between coefficientsAl , Bl , andCl :

Al5
i

g l
Cl , Bl5

1

g l
2 Cl .

Correspondingly, the boundary conditions for thenth stage
can be rewritten as

i(
l 51

3
1

g l
~n! Cl

~n!5w5 ~z in8
~n!!, ~17!

(
l 51

3
1

g l
~n!2 Cl

~n!5 ũ~z in8
~n!!, ~18!
al

n
a-

(
l 51

3

Cl
~n!5F5 ~z in8

~n!!. ~19!

Recall that all perturbations are normalized toF0 . Therefore,
in the input waveguide,F5 (0)51.

Equations~17!–~19! form a set of linear inhomogeneou
algebraic equations which can easily be solved; i.e., the
plitudes of partial wavesCl

(n) can be expressed via the d
terminant and subdeterminants of these equations. Co
cients in these equations depend ong (n), which are the roots
of Eq. ~13! for the nth stage. Note that for each successi
stage of the device the boundary value for the ene
w5 (n)(z in

(n)) ~here n>2 is the stage number! is equal to the
energyw5 (n21)(zout,w

(n21)) at the exit from the previous stage
here zout,w

(n21) is the normalized distance at which the (n
21)st waveguide ends. The boundary condition for t
phaseũ (n)(z in

(n)) takes into account also the effect of ballist
bunching in the drift region between two stages:

ũ ~n!~z in
~n!!5 ũ ~n21!~zout,w

~n21!!1w5 ~n21!~zout,w
~n21!!~z in

~n!2zout,w
~n21!!.

~20!

The wave amplitude at the exit from the device,

F5 5(
l 51

3

Cl
~N!eig l

~N!
~zout

~N!
2z in

~N!
!

~whereN is the number of the final stage!, determines the
gain

G520 logH U(
l 51

3

Cl
~N!eig l

~N!
~zout

~N!
2z in

~N!
!UJ . ~21!

Above, we described the method of solving Eqs.~14!–
~16!. Certainly, Eqs.~9!–~11! can be solved in a similar man
ner.

B. Operation near cutoff

In the case of operation near cutoff, both forward a
backward waves can be excited by electrons. Superpos
of these waves having the same, fixed transverse struc
forms an eigenmode of such a circuit. Therefore, instead
considering a forward wave propagating along the axis w
the axial wave numberkz , it is necessary to consider th
field whose axial structure in a waveguide excited near cu
frequency is determined by an electron beam@5,20#. Corre-
spondingly, instead of Eqs.~2!–~4!, one should use a self
consistent set of equations~cf. Ref. @5#!.

dw

dz
522~12w!s/2 Re~ f e2 iu!, ~22!

du

dz
5w2D1s~12w!s/221 Im~ f e2 iu!, ~23!

d2f

dz2 1h̄2f 5 i I
1

2p E
0

2p

~12w!s/2eiu du0 . ~24!
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4814 PRE 60G. S. NUSINOVICH AND M. WALTER
Equations~22! and~23! represent, respectively, Eqs.~2! and
~3! reduced for the case of smallkz ; correspondingly, now
w5(2/b'0

2 )@(g02g)/g0#, u5s(*0
tVdt81f)2vt, z

5(b'0
2 /2bz0)(vz/c), b50, and D5(2/b'0

2 )(12sV0 /v).

Equation ~24! is a string equation in which h̄
5(2bz0 /b'0

2 )h is the normalized axial wave number, andI
is the normalized beam current parameter which does
depend onh and relates toI 0 given by Eq.~6! as

I 54h
bz0

b'0
2 I 0 . ~25!

Note that our limith→0 will also cause some simplificatio
in Eq. ~6! which determinesI 0 . Also note that the termh̄2 in
Eq. ~24! characterizes a small departure from cutoff; ho
ever, the field excited near cutoff cannot be associated w
one given axial wave number: after making a Fourier tra
form, this field can be considered@13# as a superposition o
plane waves with small~positive and negative! kz’s having a
width of thekz spectrum of the order of 1/L, whereL is the
waveguide length.

In the frame of the small-signal theory, we can again l
earize these equations with respect to perturbations ca
by a small amplitude field, and, introducing

w̃5
1

f 0

1

2p E
0

2p

w~1!e
iu0 du0 , ũ5

1

f 0

1

2p E
0

2p

u~1!e
iu0 du0 ,

f̃ 5
f

f 0
eiDz, ~26!

~where f 0 is the field amplitude at the entrance to the fi
waveguide!, reduce Eqs.~22!–~24! to the following set of
equations:

dw̃

dz
52 f̃ , ~27!

dũ

dz
5w̃2 i

s

2
f̃ , ~28!

d2 f̃

dz222iD
d f̃

dz
1~ h̄22D2! f̃ 5 i I S i ũ2

s

2
w̃D . ~29!

Here Eqs.~27! and ~28! are essentially the same as Eqs.~9!
and ~10!, respectively, while Eq.~29! is more complicated
than Eq.~11!. Note that the termh̄22D2 in Eq. ~29! can be
represented as

2
4

b'0
4 v2 ~v2kzvz02sV0!~v1kzvz02sV0!,

which is the product of cyclotron resonance detunings
forward and backward components of the field.

For perturbationsw̃, ũ, f̃ ;exp(iGz), Eqs.~27!–~29! yield
the fourth-order dispersion equation@21#

G2~G222DG2h̄21D2!1sIG2I 50. ~30!
ot

-
th
-

-
ed

t

r

Note that the fourth order of Eq.~30! corresponds to our
consideration in which not only two cyclotron beam wav
but also forward and backward waveguide waves are ta
into account, in contrast to the treatment of operation
from cutoff done in Sec. II A, where the interaction betwe
electrons and backward waves was neglected as nonsyn
nous.

When the beam current parameter is small enough (I 1/4

!1) we can introduceg5G/I 1/4, d5D/I 1/4, andh% 5h̄/I 1/4

and, ignoring small terms proportional toI 1/4, reduce Eq.
~30! to

g2~g222dg1d22h% 2!51. ~31!

This simplified dispersion equation corresponds to reduc
Eqs.~27!–~29! to the equations

dw5

dz8
52 f̄ , ~32!

dũ

dz8
5w5 , ~33!

d2 f̄

dz8222id
d f̄

dz8
1~h% 22d2! f̄ 52 ũ, ~34!

wherez85zI 1/4, w5 5w̃/I 1/4, and f̄ 5 f̃ /I 1/2.
In the case of exact cyclotron resonance,d50, Eq. ~31!

yields two roots

g1,256 i H F11S h% 2

2
D 2G1/2

2
h% 2

2 J 1/2

. ~35!

which correspond to the growing and decaying partial wa
and two other roots,

g3,456H F11S h% 2

2
D 2G1/2

2
h% 2

2 J 1/2

,

which correspond to two constant amplitude waves propa
ing along the axis with slightly different phase velocities. A
follows from Eq. ~35!, the maximum growth rate occurs i
the case of operation at the cutoff frequency (h% →0). Its
valuegmax51 is a little larger than the maximum growth ra
normalized toI 0

1/3 in the case of operation far from cutof
which, as follows from Eq.~13!, is equal to)/2 @19#. The
difference between these two normalizations of the grow
rate will be discussed below.

Coming back to Eq.~31!, let us note that this equation i
more complicated than Eq.~13!, not simply because the
former is quartic while the latter is cubic, but also becau
Eq. ~31! contains two parameters~d andh% ) instead of the one
detuning d in Eq. ~13!. This corresponds to the above
mentioned necessity of considering~in the case of operation
near cutoff! cyclotron resonance with both forward and bac
ward waves.

Representing the field asf̄ 5S l 51
4 Cle

ig lz8 we can again
find the amplitudes of partial waves,Cl , from equations rep-
resenting the boundary conditions. For the electron ene
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PRE 60 4815LINEAR THEORY OF MULTISTAGE FORWARD-WAVE . . .
and phase the boundary conditions are the same as be
For the field, we should also add the condition for the fie
derivative to the boundary condition for the field amplitu
at the entrance to each section,f̄ (1)(0)51, f̄ (n.1)(z in

(n))50.
For the first stage, the ingoing boundary condition is

d f̄ ~1!

dz8
U

0

5 i(
l 51

4

g l
~1!Cl

~1!52 ih% ~1!. ~36!

@In the right-hand side of this equation, we took into acco
that f̄ (1)(0)51.] For the output waveguide we should use t
outgoing boundary condition

d f̄ ~N!

dz8
U

z
out8~N!

52 ih% ~N! f̄ ~N!~zout8~N!!,

which can be rewritten as

(
l 51

4

~g l
~N!1h% ~N!!Cl

~N!eig l
~N!

~zout
~N!

2z in
~N!

!50. ~37!

So, for instance, in the case of a two-stage gyro-TWT,
coefficientsCl

(1) for the input waveguide are determined b

Eqs. ~17! and ~18! @in which w5 (0)5u5 (0)50], @Eq. ~36!#,
and f̄ (1)(0)5S l 51

4 Cl
(1)51. For the output waveguide the co

efficients Cl
(2) are determined by Eqs.~17! and ~18! with

nonzero w5 (z in8
(2)) and ũ(z in8

(2)) @Eq. ~37!# and f̄ (2)(z in8
(2))

50. When the waveguides are ended with some attenua
absorbing the microwave power propagating through
waveguide, any of these waveguides can be subdivided
two parts, as shown in Fig. 1. In the first part, which does
contain a lossy dielectric, the amplitudes of partial waves
be found in the same manner as in the output wavegu
~i.e., with the outgoing boundary condition!. For the second
part, which contains a lossy material, we can use the ingo
boundary condition for the wave amplitude and the disp
sion equation~31!, in which the parameterh% proportional to
the axial wave number is complex in the presence of atte
ation. Certainly the same method can be used for analyzi
multistage gyro-TWT operating far from cutoff. The ga
can be determined by the same Eq.~21!, in which the sum-
mation should be done now over four partial waves.

Before closing this subsection, let us emphasize again
the stages may have different parameters. For instance
difference in transverse dimensions of waveguides chan
the axial wave number in each section. Therefore, the de
ing D in Eq. ~12! @or d, h̄, andh% in Eqs.~13!, ~30!, and~31!,
respectively# can be specific for each stage. In a certa
sense, for the bandwidth of the device this difference m

FIG. 1. Schematic of a two-stage device with attenuators.
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play the same role as stagger tuning of eigenfrequencie
the cavities of conventional klystrons@22# or gyroklystrons
@23#.

C. Two-stage gyro-TWT with tapered parameters

As mentioned in Sec. I, one of the most promisi
schemes for wide-band operation is a two-stage gyro-TW
in which cross sections of the input and output wavegui
as well as the guiding magnetic field vary along the ax
Such a scheme was studied in Refs.@5–9#. As mentioned in
Ref. @6#, when the tapering of the waveguides and the m
netic field are matched in such a way that in any cross s
tion the electron cyclotron frequency~or its resonant har-
monic! is equal to the cutoff frequency of the operatin
wave, the system may exhibit a very broadband operation
this case the interaction is the most efficient in the wa
guide sections where the frequency is close to cutoff and
frequency tuning just shifts these interaction regions alo
the axis. So the bandwidth of such a device is mostly
stricted by the electron velocity spread, whose effect
creases as the distance between interaction regions grow

For describing the operation of this device one again
use Eqs.~22!–~24! in which now the cyclotron resonanc
mismatchD and the normalized axial wave numberh̄ depend
on the axial coordinatez. In the frame of the small-signa
theory these equations can be reduced to one integrodi
ential equation,

d2f

dz2 1h̄2f 5Ir * H isE
0

z

f r dz81E
0

zE
0

z8
f r dz9dz8J ,

~38!

in which r 5exp$i*0
zD dz8%. Note that introducing the vari-

ablesI 85s4I , z85z/s, and h̄85sh̄ allows one to eliminate
from Eq. ~38! the harmonic numbers @5#.

To solve Eq.~38! is rather difficult. Also, the axial depen
dence of h̄ and D does not allow one to use the simp
formalism used above for solving Eqs.~9!–~11!, ~14!–~16!,
~27!–~29!, and~32!–~34!. Therefore, it was suggested in Re
@6# that the system be analyzed by using the specified-fi
approximation in the input waveguide and the specifie
current approximation in the output waveguide. This a
sumption was also used in Ref.@8#, where the derivation of
the expression for the efficiency was shown~in contrast to
Ref. @6#, where the derivation of this expression was omitt
completely!. Since an expression for small-signal gain w
derived in none of these references, we describe this der
tion in the Appendix. The resulting expression for the sma
signal gain in the case of linearly tapered magnetic field a
waveguide radius is:

G510 logH ~2p!4
I ~2!

2 zdr
2 v2~t1!v2~t2!

ā~1!
1/3ā~2!

1/3m~1!m~2!
J . ~39!

Here I (2) is the normalized beam current parameter de
mined by Eq.~25! for the output waveguide,zdr is the effec-
tive drift length which can be determined as the normaliz
distance between cutoff cross sections in two waveguid
zdr5zc(2)2zc(1) , v(t) is the Airy function whose argumen
is equal to
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t5
ā1/3

m S Dc2
ā

4mD . ~40!

Here, as in Eq.~39!, the coefficientsā andm characterize the
slopes of the waveguide radius and external magnetic fiel
each waveguide, respectively; as shown in the Appen
these coefficients correspond to representation of the nor
ized axial wave number in Eqs.~24! and ~38! as

h̄~n!
2 5~21!nā~n!~z2zc~n!!,

and the cyclotron resonance mismatch as

D~n!5Dc~n!1~21!nm~n!~z2zc~n!!.

Here the index~n! denotes the waveguide section (n51 and
2!, and Dc(n) is the cyclotron resonance mismatch for t
cutoff cross section of thenth waveguide. Note that when th
magnetic field tapering corresponds to the tapering of
waveguide wall, this mismatchDc(n) does not depend on th
operating frequency. Then the only frequency-depend
term in Eq.~39! is zdr5zc(2)2zc(1) , since the cutoff cross
section is determined by the frequency. This may lead t
very broadband operation. As pointed out in Ref.@6#, in such
a device the bandwidth can be restricted by the effect
velocity spread on transit angles through the drift regio
Some estimates done in Ref.@6# for realistic values of spread
predicted a 7% bandwidth; also, some calculations don
Ref. @8# showed the possibility of operating in a 27% ban
width, which is consistent with the 20% bandwidth expe
mentally demonstrated in Ref.@9#.

Note that without making an assumption about t
specified-field and specified-current approximations in
input and output waveguides, respectively, one can also
velop a small-signal theory of these devices. However,
this general case the theory will be much more complica
Even a simple attempt to take electron phase bunching in
waveguides into account makes it necessary to integrate
functions, which cannot be done analytically, although th
integrals are tabulated elsewhere@24#.

III. RESULTS

We have studied two-stage traveling-wave amplifiers
erating both far from and close to cutoff regimes. The ope
tion far from cutoff is illustrated by Fig. 2, which shows th
dependence of the gain on the frequency detuning for a
tem described by Eqs.~13! and ~17!–~19!. The calculations
are done for the normalized lengths of the first and sec
waveguides equal tozout8(2)2z in8

(2)5zout8(1)2z in8
(1)53 and the

normalized length of the drift sectionz in8
(2)2zout8(1)52.5. The

detuningd shown along the horizontal axis in Fig. 2 is th
detuning in the first waveguide. The detuning in the seco
waveguide is represented asd25d1Dd , whered stands for
detuning, so thisDd describes the difference in parameters
two stages. As is seen in Fig. 2, asDd increases, the gain
becomes smaller; however, the bandwidth can be increa
first, when the gain curve becomes flat, as shown forDd
52.75, and second, when the gain curve exhibits two pe
of approximately the same amplitude with a relatively sm
valley between them, as shown forDd54.8. Note that the
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change of sign ofDd does not affect the results, since in th
frame of the linear theory both stages play a similar role
the amplification process. For the gain curves shown in F
2, the change of sign ofDd from plus to minus causes onl
shift of the curves to the region of larger detuningsd.

The resulting dependence of the maximum gain and ba
width ~the latter is expressed in terms ofd! on the detuning
parameterDd is shown in Fig. 3 for the same lengths of a
sections. Note that, as the drift section length increases,
second peak in the bandwidth increases and narrows.
bandwidth increase can be explained by the enhanceme
electron ballistic bunching in the drift region. The narrowin
of this peak follows from the fact that with an increase
drift section length the difference between maximum a
minimum values of the gain, like the ones shown in Fig
for Dd54.8, grows. So, in the limiting case, it is possible
find such values ofDd and drift section length for which both
peaks are equal and the minimum gain between these p
is just 3 dB smaller than these maxima. Certainly, in t
limiting case, any variation inDd will make the gain devia-
tion larger than 3 dB, thus reducing the bandwidth. Note t
in the region of such a narrow peak, the gain~21.4 dB! is
much smaller than forDd50, whenG538.5 dB. Therefore,
in terms of the gain-bandwidth product, it is preferable
operate in the vicinity of the first peak: for instance, forDd
50, 2.75, and 4.8, this product~when the gain is expresse

FIG. 2. Gain as a function of the cyclotron resonance misma
in the input waveguided for several values of the detuning param
eterDd , characterizing the difference between such mismatche
the input and output waveguides.

FIG. 3. Maximum gain and normalized bandwidth as functio
of the detuning parameterDd .
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in dB and the bandwidth ind! is equal to 58.5, 70.2, an
57.3, respectively.~Below we will discuss the correspon
dence betweend and the real bandwidth.!

The results shown in Figs. 2 and 3 are valid for the line
beam TWT and the gyro-TWT, in which some small term
proportional toI 0

1/3 are ignored. To check the importance
these terms for gyro-TWT operation, we have studied a m
complete set of equations, i.e., Eq.~12! and boundary condi-
tions for w̃, ũ, andF̃, which follow from Eqs.~9!–~11! for
I 050.0234.~This value ofI 0 will be motivated below.! The
results are shown in Fig. 4, which is similar to Fig. 3. No
that the normalized detuning along the horizontal axis a
the bandwidth shown in Fig. 4 correspond, respectively
the detuning and bandwidth shown in Fig. 3, multiplied
I 0

1/3.0.286. Both figures are very similar; however, the
fects of M-type interaction@13,15,18# ignored in previous
analyses leads to a certain degradation in gain. The la

FIG. 4. Maximum gain and normalized bandwidth calculat
with the account forM-type interaction effects.
r

re

d
o

-

er

analysis was done for the case of interaction in both stage
the fundamental cyclotron resonance.~Recall that, in the
theory of gyrodevices, theM-type effects in electron bunch
ing and coherent radiation and absorption are associated
a ‘‘direct’’ action of the wave upon electrons@13,15,18#.
Such a bunching occurs only in the process of interaction
contrast toO-type effects caused by the relativistic depe
dence of the electron gyrofrequency on its energy. The la
effects leading to electron orbital bunching may proceed i
drift region that is free from microwaves after initial modu
lation of electron energies in the input stage of the devic!

In the rest of this section we present the results of
study of near cutoff operation. The roots of Eq.~31! are
shown in Figs. 5~a!, 5~b!, 5~c!, and 5~d! for h% 50, 1, 2 and 3,
respectively. As follows from these figures, the increase inh% ,
which means a departure from cutoff operation, reduces
growth rate of the growing wave, and simultaneous
stretches the region of cyclotron resonance mismatche
which the amplification occurs.

The operation of the gyro-TWT with two identica
waveguides is illustrated by Figs. 6 and 7. In Fig. 6, the g
curves are shown for several values of the parameterh% ; the
normalized lengths of the sections are equal tozout8(1)2z in8

(1)

5zout8(2)2z in8
(2)52.5 and zdr8 5z in8

(2)2zout8(1)51. These gain
curves, as well as those which are not shown in Fig. 6, de
onstrate a strong dependence of the gain and bandwidt
the parameterh% : the device exhibits a low-gain, large
bandwidth operation whenh% is smaller than 0.6, close to 1
or between 1.5 and 1.9, while ath% of close to 0.75, in the
region of 1.15–1.4, and between 1.9 and 2, the gain is h
and the bandwidth is narrow. These results are summar
in Fig. 7, which shows four sharp peaks in the gain a
e-
w
n-
-

FIG. 5. Roots of the dispersion equation d
scribing the operation near cutoff; circles sho
growth rates, solid lines show propagation co
stants.~a!, ~b!, ~c!, and ~d! correspond, respec

tively, to a normalized axial wave numberh%

equal to 0, 1, 2, and 3.
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4818 PRE 60G. S. NUSINOVICH AND M. WALTER
function ofh% and the large bandwidths in the valley betwe
the first two peaks and in the valley between the last t
peaks. Note that the largest gain-bandwidth product co
sponds to the operation in the first valley.

The effect of ‘‘stagger tuning,’’ i.e., the operation of tw
waveguides at different values ofh% , is illustrated by Figs.
8~a! and 8~b!, which correspond toh̃50.6 and20.6, respec-
tively. Hereh̃5h% (2)2h% (1). These figures look very similar to
Fig. 7, although the curves are shifted along the horizo
axis, which shows the value ofh% (1), corresponding to the
value ofh̃. In all three cases the maximum values of the g
in sharp, narrow peaks are about 50–60 dB and the decr
in the gain is usually accompanied by an increase in
bandwidth. Note that the maximum bandwidth correspo
to h̃520.6; see the first valley in the gain curve shown
Fig. 8~b!. Also important are plateaus in the bandwid
shown in Figs. 7 and 8~b! for relatively large axial wave
numbers. These plateaus are important since the frequ
deviation within the bandwidth causes some changes in
axial wave number. So, strictly speaking, correct calculati
of the bandwidth would be done for the specified ratio of
carrier frequency to the cutoff frequency and for the spec
electron cyclotron frequency. Then variation of the fr
quency within the bandwidth should be taken into accoun
the detuningd and axial wave numberh% , simultaneously.

FIG. 6. Gain as a function of the cyclotron resonance misma
for the case of operation near cut-off in a two-stage gyro-TWT w
equal cutoff frequencies of both waveguides.

FIG. 7. Maximum gain and normalized bandwidth as functio

of the normalized axial wave numberh% in a two-stage gyro-TWT
with equal cutoff frequencies of both waveguides.
o
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Since in our calculations we ignored this effect, the ban
width shown in Figs. 7 and 8 should be considered only as
illustration.

IV. DISCUSSION

Let us discuss the relation between the normalized par
eters used in our treatment and the real parameters of
crete devices. Consider a two-stage gyro-TWT operating
the fundamental cyclotron resonance, in which a TE01 wave
of cylindrical waveguides is excited by an 80-kV, 2-A ele
tron beam with an orbital-to-axial velocity ratio ofa51.3.
Assume that a thin annular electron beam has a radius
responding to the maximum coupling to the TE01 wave at the
fundamental harmonic@in Eq. ~7!, k'R051.84]. For the
coupling impedance given by Eq.~7! this yields the value
Gcpl.0.42. The velocity components for a given beam vo
age anda.1.3 are approximately equal tob'0.0.4 and
bz0.0.3. Correspondingly, the normalized beam current
rameterI present in Eqs.~24! and ~29! is equal to 0.0177,
and the normalized current parameterI 0 , which is deter-
mined by Eq.~16!, is equal to 0.00234/h. So, for instance,
when the axial wave number is equal to 0.1(v/c), I 0

50.0234, andI 0
1/3, which plays the role of the Pierce gai

parameter, is equal to 0.286. This is just the value used
calculations, the results of which are shown above in Fig
Note that in the case of operation near cutoff, the role of
Pierce gain parameter is played byI 1/4, which in our ex-
ample is equal to 0.365. These powers of normalized cur

h

s

FIG. 8. Maximum gain and normalized bandwidth as functio

of the normalized axial wave number in the first waveguide,h% (1),

for a detuningh̄5h% (2)2h% (1) equal to 0.6~a! and20.6 ~b!.
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PRE 60 4819LINEAR THEORY OF MULTISTAGE FORWARD-WAVE . . .
parameters also determine the growth rates of the wave
the cases of operation far from and close to cutoff.

Let us start by considering operation far from cutoff in t
case of exact cyclotron resonance. Equation~13! for D50
yields the maximum growth rate Img5)/2, which for the
propagation constantG present in Eq.~12! corresponds to
Im G5()/2)I 0

1/3'0.25. This means that the exponent
growth of the wave occurs at distancezexp;(Im G)21.4,
which corresponds toLexp/l.2.4. Note that the result
shown in Figs. 2 and 3 correspond to the distance multip
by I 0

1/3; i.e., the normalized length of each waveguide tak
equal to 3 in those calculations is 2.6 times larger than
exponential length (Img)21. In other words, the length o
each waveguide is close to 6l. The bandwidth, which in the
normalized units used in Figs. 2 and 3, can be about 2.5
b'0.0.4 and I 0

1/3.0.286 corresponds to the bandwidt
D f / f 55.67%.

In a similar way, consider operation near cutoff. In t
limiting case of exact cyclotron resonance and opera
very close to cutoff, Eq.~35! yields the growth rate Img
51, which is equivalent to ImG5I1/4. In our example, this
means ImG50.365. Correspondingly, the distance at whi
the wave amplitude increases bye times is equal tozexp
;(Im G)21.2.74, which corresponds toLe /l.1.65. So, the
growth rate in this case is a little higher than in the pre
ously considered case of operation at the wave withkz
50.1v/c.
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APPENDIX: SMALL-SIGNAL GAIN IN A TWO-STAGE
TAPERED GYRO-TWT

Consider a two-stage gyro-TWT in which the input wav
guide is linearly down-tapered and the external magn
field there is linearly up-tapered while the output wavegu
is linearly up-tapered and the magnetic field there is linea
down-tapered to maintain the cyclotron resonance condit
These two tapered waveguide sections can be separated
waveguide of a constant radius, which is below cutoff for
operating frequencies.

The linear tapering of the waveguides allows one to r
resent the squared normalized axial wave numberh̄2 in Eq.
~24! as

h̄~n!
2 5~21!nā~n!~z2zc~n!!, ~A1!

where n is the stage number, andā (n)52(2bz0

/b'0
2 )(a (n) /n (n)) is the parameter of wall tapering for th

nth stage. Heren (n) is the eigennumber of the operatin
mode in thenth stage, anda (n) describes a small slope of th
cylindrical waveguide radius:a (1)5(Rin2Rmin)/L1 anda (2)
5(Rout2Rmin)/(Lout2L2); Rin , Rout, and Rmin are, respec-
tively, the input and output radii, and the minimum radiu
in

l

d
n
e

or

n

-

d
y
I

-
ic
e
y
n.
y a
l

-

,

which is the radius of a straight section between two tape
waveguides;L1 is the length of the first waveguide;L2
2L1 is the length of the straight section; andLout designates
the end of the output waveguide. Also in Eq.~A1!, zc(n) is
the coordinate of the cutoff cross section, which depe
on the operating frequencies:zc(1)5(b'0

2 /2bz0)@v(Rin

2nc/v)/a (1)c# and zc(2)5z in
(2)1(b'0

2 /2bz0)@v(nc/v
2Rmin)/a(2)c#.

The tapering of the magnetic field in the case when
keep the cyclotron frequency~or its resonant harmonic!
equal to the cutoff frequency for anyv should correspond to
the wall tapering:

B0~z!5B0~zc!R~zc!/R~z!.

Correspondingly, the cyclotron resonance mismatch in b
tapered waveguides can be determined as

D~n!5Dc~n!1~21!nm~n!~z2zc~n!!, ~A2!

whereDc(n)5(2/b'0
2 )@v2s(n)V0(zc(n))#/v is the cyclotron

resonance mismatch for the cutoff cross section~its
coordinate zc(n) corresponds tozc(n) defined above!,
and

m~n!54~bz0 /b'0
4 !~a~n! /n~n!!~vc~n! /v!

.4~bz0 /b'0
4 !~a~n! /n~n!!

describes the effect of magnetic field tapering.
Assuming the specified-field approximation for the inp

waveguide, we can represent the fieldf as A f (0)(z), where
the amplitudeA is determined by the power of a driver,Pdr
@25#: A254I 1Pdr /P0' ~hereP0' is the beam power assoc
ated with electron gyration!. The ‘‘cold-cavity’’ function
f (0)(z) is determined by Eq.~24!, in which the beam effects
i.e., its right-hand side~RHS!, is ignored. Taking Eq.~A1!
into account, this equation can be rewritten as

d2f ~0!

dz2 2ā~1!~z2zc~1!! f ~0!50.

Introducing the variablet5ā (1)
1/3(z2zc(1)) we can transform

this equation into the known Airy equation

d2f ~0!

dt2
5t f ~0! , ~A3!

the solution to which is the superposition of two Airy fun
tions: f (0)5B1u(t)1B2v(t). To eliminate the divergence o
this solution att→6`, we should assumeB150. Also,
since the wave amplitude is determined byA, we will assume
B251, which yieldsf (0)5v(t) @26#.

Using this representation of the field, one can integr
linearized equations for electron motion@Eqs.~22! and~23!#.
Below, we will assume that the interaction regions in bo
tapered waveguides are much shorter than the drift sp
between them. This allows us, first, to determine the mo
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lation in electron energies in the first tapered waveguide,
then to calculate the orbital phase bunching in the drift
gion caused by this modulation. As follows from Eq.~22!,
the energy modulation is equal to

w~1!~zout
~1!!52

2A

ā~1!
1/3 ReH e2 iu0E

t in
~1!

tout
~1!

v̂dtJ , ~A4!

where v̂(t)5v(t)exp$i*0
zD(1) dz8%, and D (1) is given by Eq.

~A2!.
e

to

s
v

li
o

d
-

To calculate the integral on the RHS of Eq.~A4!, let us
use the integral representation of the Airy function@25#:

v~ t !5
1

Ap
E

0

`

cosS x3

3
1xtDdx5

1

2Ap
E

2`

`

ei @~x3/3!1xt# dx.

~A5!

This leads to the necessity to calculate the integral
F ~1!5E
2`

`

v̂ dt5
1

2Ap
E

0

` H E
2`

`

ei @~x3/3!1xt1~Dc~1!1m~1!zc~1!!z2~m~1!/2!z2#dxJ dt. ~A6!
Here we replaced the limits of integrationt in
(1) and tout

(1) by
6`, assuming that the waveguide is long enough. Repres
ing the variablest and x as t81(ā (1)

2/3/m(1))(x1Dc(1) /ā (1)
1/3)

and x82ā (1)
2/3/2m(1) , respectively, one can rewrite Eq.~A6!

as

F ~1!5e2 iC1E
2`

`

ei @~x83/3!1x8t1# dx8E
2`

`

e2 i ~m~1!/2ā~1!
2/3

!t82
dt8,

~A7!

where C15ā (1)
2 /3(2m(1))

32(ā (1)/2m(1)2Dc(1))
2/2m(1)

2Dc(1)zc(1)2m(1)zc(1)
2 /2 is the phase constant, and

t15
ā~1!

1/3

m~1!
S Dc~1!2

ā~1!

4m~1!
D . ~A8!

In Eq. ~A7! the first integral, as follows from Eq.~A5!, is
equal to 2Apv(t1) and the second integral is equal
ā (1)

1/3Ap/m(1)(12 i ). ~In finite limits the latter integral would
yield a superposition of Fresnel integrals.! As a result, the
electron energy modulation given by Eq.~A4! can be repre-
sented as

w~1!~zout
~1!!522S p

m~1!
D 1/2

A Re$e2 i ~u01C1!~12 i !v~t1!%.

~A9!

In accordance with Eq.~23!, this energy modulation lead
to phase bunching, which at the entrance to the output wa
guide will be equal to

u~1!~z in
~2!!5w~1!~zout

~1!!~z in
~2!2zout

~1!!. ~A10!

Assuming the specified current approximation to be va
for the output waveguide, we can describe the excitation
this waveguide by a simplified Eq.~24!:
nt-

e-

d
f

d2f 2

dz2 1ā~2!~z2zc~2!! f 2

5 i I ~2!

1

2p E
0

2p

ei ~u02*0
zD~2! dz8!

3F2
s

2
w~1!~zout

~1!!1 iu~1!~z in
~2!!Gdu0 .

~A11!

In variablesw̃ andũ given by Eqs.~26! ~in which we assume
f 05A),

w̃~zout
~1!!52S p

m~1!
D 1/2

e2 iC1~12 i !v~t1!,

ũ~z in
~2!!5w̃~zout

~1!!zdr , ~A12!

where zdr5z in
(2)2zout

(1) . Correspondingly, Eq.~A11! can be
rewritten as

d2f

dt2
2t f 5Bw~ t !, ~A13!

where the output waveguide field is normalized toA, t5
2ā (2)

1/3(z2zc(2)),

B52~ I ~2! /ā~2!
2/3!~zdr1 is/2!w̃~zout

~1!!,

andw5exp$2i*
z
in
(2)

z
D (2)dz8%. A general solution of the inho-

mogeneous equation~A13! is ~see, e.g., Ref.@27#!

f 5u~ t !FC12
B

W E
t in

t

w~ t8!v~ t8!dt8G
1v~ t !FC21

B

W E
t in

t

w~ t8!u~ t8!dt8G , ~A14!

where the WronskianW for the properly normalized Airy
functions is equal to 1@26#. Here again, in order to avoid
singularities at the entrance,t5t in , we should assumeC1
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50. Then the constantC2 can be determined from the de
mand that at the output,t5tout, the field should represent a
outgoing traveling wave:

f ~ tout!5D@u~ tout!2 iv~ tout!#. ~A15!

The fact that such a superposition represents an outg
forward wave follows from the integral representation of t
function v(t) given by Eq.~A5! and the functionu(t):

u~ t !5
1

Ap
E

0

`Fe2~x3/3!1tx1sinS x3

3
1txD G dx,

where, fort5tout→2`, the first term can be neglected. S

f ~ tout!52 iDE
0

`

ei @~x3/3!1toutx#dx. ~A16!

From comparison of the first term in Eq.~A14! for f (tout)
and C150 with the first term on the RHS of Eq.~A15!, it
follows thatD52B* t in

toutw(t)v(t)dt. Then the comparison o

the last two terms in these equations yields

C252BE
t in

tout
w~ t !@u~ t !2 iv~ t !#dt.

Correspondingly, the field at the exit can be determined

f ~ tout!5 iBE
0

`

ei @~x3/3!1toutx# dxE
t in

tout
w~ t !v~ t !dt.

~A17!

Here the first integral, as follows from Eqs.~A15! and~A16!,
is just an integral representation of the superposition of
Airy functions, so

E
0

`

ei @~x3/3!1toutx# dx5Ap@v~ tout!1 iu~ tout!#. ~A18!

The second integral in Eq.~A17! is the complex conjugate to
the function F (1) determined by Eqs.~A6! and ~A7!, in
which index~1! should be replaced by index~2!. So,
.

t.

u,

,

es
ng

o

E
t in

tout
w~ t !v~ t !dt5F ~2!

* 5eiC22Apv~t2!ā~2!
1/3S p

m~2!
D 1/2

3~11 i !. ~A19!

Correspondingly, the wave intensity at the output can be
termined as

u f ~ tout!u25uBu2
~2p!3

Autoutu

ā~2!
2/3

m~2!
v2~t2!, ~A20!

where forv(tout) andu(tout) we used asymptotic expression
valid for large negative arguments, anduBu2, as follows from
the definition ofB and Eq.~A12!, is equal to

uBu25
I ~2!

2

ā~2!
4/3 zdr

2 2p

m~1!
v2~t1!. ~A21!

Substituting Eq.~A21! into Eq. ~A20!, one obtains

u f ~ tout!u25
~2p!4I ~2!

2 zdr
2

ā~2!
2/3m~1!m~2!Autoutu

v2~t1!v2~t2!. ~A22!

Recall that this field is already normalized to the input a
plitude in accordance with Eq.~26!. Therefore, taking into
account that the input and output powers are also prop
tional to the axial wave numbers in corresponding cross s
tions, one can easily obtain the following expression for
gain:

G510 logH ~2p!4
I ~2!

2 zdr
2 v2~t1!v2~t2!

ā~1!
1/3ā~2!

1/3m~1!m~2!
J , ~A23!

which is essentially the same as one mentioned in Ref.@7#.
Note that in Ref.@7# it was suggested thatzdr be interpreted
as the distance between cutoff cross sections in b
waveguides, which makes this value frequency depende
.
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